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Abstract. Li and LeVeque’s recent Immersed Interface Method, SIAM J. Nu-
mer. Anal., 31, 1994, pp. 1019—1044, has been used on a multitude of problems
ranging from Electrostatics to Traffic Flow. We give a summary of the different
uses of the IIM, and proceed by connecting the IIM with analytic descriptions in
the simplest cases.

The well known discretization of the Dirichlet boundary condition for the Laplace
equation for grid–aligned boundaries is shown to be a special case of the Explicit
Jump Immersed Interface Method. For one-dimensional boundary value problems,
Schur–complements for finite difference discretizations are pointwise discretizations
of integral formulas, and fast solvers may be viewed as efficient evaluation of inte-
gral formulas. The analogy requires a discretization of the delta and dipole, which
may occur even on the domain boundary.

1. Introduction

The numerical treatment of interfaces and boundaries is very important as computers
become powerful enough to deal with less idealized and more realistic problems. Free
boundary value problems in general and more specifically design, control and inverse
problems require the fast and automatic treatment of general geometries and boundary
or interface conditions. The solution of any particular pde is merely a step toward the
solution of the “real” problem, and should be solved as accurately and quickly as needed
under this “stepping stone” view.

One approach to deal with these requirements, in particular the automation, is to use
uniform meshes and deal with the boundaries and interfaces separately. Early examples
are the Immersed Boundary Method (IBM), [18, 19, 23] and Mayo’s treatment of the
Poisson and Biharmonic equations in irregular regions [17]. [2] used Mayo’s truncation
error point of view to analyze Peskin’s discrete delta approach. Motivated by this work,
Li and LeVeque invented the Immersed Interface Method (IIM), [8], to treat the elliptic
discontinuous variable coefficient (“interface”) case. The IIM has since been used for
several applications and extended in several directions, notably to hyperbolic and parabolic
problems. The strong dependence of the error on the relative position of interface and grid
for even moderate contrast in the coefficients (at least in the conductive case, [24]), and
the lack of fast solvers, turned out to be slight problems suffered by the original IIM. In
[8], the discontinuities were always “mild” in the sense that the contrast (quotient between
limits of β on the sides of the interface) is always less than 10. Both of these limitations
were obstacles for the use in inverse problems and for the extension of the discontinuous
coefficient IIM to 3D, because fine grids were needed for good quality of solutions, and
the problems would become enormous.

Li applied the IIM idea in his dissertation [11] to 3D (with an implementation for
spherical interfaces; see also [12]), heat equations in 2D with fixed interfaces, Stokes flow
with moving interfaces in 2D (see also [9]) and heat equations in 1D with moving interfaces.
He also extended the IIM to the nonlinear case in [13] in a different fashion from our own
work [28].
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A breakthrough occurred with the advent of Li’s paper A Fast Iterative Algorithm for
Elliptic Interface Problems [14]. We will refer to this method as the Fast Iterative IIM
(FIIIM). Li used the observation that for piecewise constant coefficients, the equation can
be written as a Poisson equation by dividing through the coefficient, if in addition one
observes the jump conditions across the interface. This leads naturally to the idea of split-
ting the finite differences near the interface into the standard differences and corrections
to the standard differences, and brings the FIIIM closer to the IIM for singular sources,
Peskin’s IBM and Mayo’s approach. The jumps in the function and its derivatives (and
not jumps like [βun] as considered in [8]) turn out to be the crucial quantities. Given
the jumps, the FIIIM was in the same situation as Mayo and Peskin: only corrections to
the right hand side of the linear system are needed. Li chose to do this in the spirit of
the original IIM, by selecting a point on the interface and developing Taylor expansions
about it on both sides of the interface. The more difficult question was how to find the
jumps. Lacking an integral equation as utilized by Mayo, Li used the equations for the
jumps based on local properties of the solution derived in [8]. The jumps were computed
only at the fixed set of control points and interpolated to intermediate points, and jumps
in second derivatives were expressed as derivatives of jumps in the solution and first-order
derivatives. In [27] it was observed that also jumps of higher than second order can al-
ways be expressed in terms of zeroth and first order discontinuities. This keeps the number
of auxiliary unknowns low and fixed, even as the mesh is refined or when higher order
methods are used.

Ultimately, a finer set of control points is needed to represent the interface more ac-
curately, but for smooth interfaces fourth order interpolation by cubic splines allows the
refinement of the control points to be much slower than the mesh refinement. The FIIM
resulted in a linear system in the original unknowns (solution values on the grid) and
auxiliary unknowns (jumps across the interface), with the standard five-point discretiza-
tion of the Laplacian as the biggest of four blocks in the matrix. Eliminating the original
unknowns results in a small, non-symmetric system for the auxiliary unknowns, a Schur
complement, that can be solved quite efficiently with an iterative method (e.g. GMRES;
see [21]). Each iteration requires the application of a fast Poisson solver on the rectangle,
but only a few iterations are needed. A fast version of the IIM for piecewise constant
coefficients was born! In addition, by making the coefficients of the corrections to the
standard differences small (essentially significantly widening the original six-point sten-
cil, and ensuring that coefficients decay in magnitude away from the diagonal by using
a weighted least squares method), Li found a much more stable version of the IIM that
does better than the IIM on large contrast problems both in the resistive and conductive
case. The Schur–complement formulation is quite similar to earlier fast elliptic solvers on
irregular domains, e.g. by Proskurowski and Widlund, [20]. In [27], a change of variables
which was also used by Golub and Concus[5] yields a fast method for piecewise smooth
coefficients.

Li went on to replace his original spline interface with a level set method, which allowed
him to compute moving interface problems successfully even in the presence of changes in
the topology of the interface with T. Y. Hou, H. Zhao and S. Osher [6], used this to study
electron migration with H. Zhao and H. Gao [16], and Stefan Problems with B. Soni [15]
The slow solvers for the original IIM were studied and improved by Adams with a multigrid
approach [1]. Yang [29] extended the IIM “back” to Mayo’s earlier problem on irregular
domains and combined her IIM for Boundary Value Problems (IIMB) with the original IIM
to treat fluid flow problems in complicated geometries with discontinuous permeabilities,
using Adams’ multigrid [1] as the fast solver for variable coefficient problems. Zhang
[30] and LeVeque and Zhang [10] showed how to use the IIM for hyperbolic systems
of partial differential equations with discontinuous coefficients arising from acoustic or
elastic problems in heterogeneous media. The latter two uses of the IIM were successfully
combined with LeVeque’s CLAWPACK software package [7]. Calhoun [3] and Calhoun and
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LeVeque [4] extended the IIM to a stream-function vorticity formulation of incompressible
flow in 2D.

The Explicit Jump Immersed Interface Method (EJIIM, [27]) places the auxiliary vari-
ables at the intersection of the interface with the mesh like Mayo and uses one-sided
interpolation to approximate the jump equations. This allows the same treatment for all
three fundamental discontinuous elliptic problems. The non–differentiability may arise
from singularly supported sources in the equation, from embedding the domain of interest
in a larger domain, or from discontinuities in the coefficients of the differential equation
(interfaces). In the remainder of this article we focus on elliptic equations with singular
sources and on irregular regions, for other types of equations and the interface case we
refer to [8] and [27] and the previously cited literature.

The FIIIM and EJIIM exploit fast solvers for constant coefficients on uniform Cartesian
grids to also find fast solutions on irregular domains or for variable discontinuous coefficient
problems. A fast solver for an elliptic differential equation can be viewed as approximating
the integration against a singular kernel as required in a boundary integral approach
[27], while allowing great flexibility in boundary conditions, body forces and the use as
a preconditioner in inhomogeneous problems. The one-dimensional ”Singular Poisson
Equation” and one-dimensional Boundary Value Problems (BVP) are considered for two
reasons. In 1D, the connections between the discretization of the differential equation
(and its fast solver) and integral equation are exact while in higher dimensions insights
from potential theory are required and the discretizations are only approximate. Secondly,
the treatment of discontinuities in solutions and their derivatives is much simpler in 1D,
because of the simple one-point structure of boundaries and interfaces. Except for these
simplifications, the EJIIM is the same in higher dimensions.

We will illustrate several aspects of the EJIIM with simple examples.

1. Integral equation interpretation of well-known discretization approaches.
2. Irregularity of the discrete solution of an elliptic differential equation.
3. Preconditioning a discretized differential equation by a fast solver and integral for-

mulas.
4. Schur–complements and Boundary Integral formulas.

To emphasize the introductory nature of this work, we have included remarks that
encourage the readers to fill in details.

2. Poisson problem, Green’s kernel and their discretizations

2.1. A 1D Poisson problem. Let f in C1(0, 1). Consider the 1D Poisson problem

uxx = f,

u(0) = 0, (1)

u(1) = 0.

We integrate f , determine the two constants of integration and see that it is solved by

u(x) =

∫ x

0

∫ y

0

f(ξ)dξdy − x

∫ 1

0

∫ y

0

f(ξ)dξdy

=

∫ x

0

(x− y)f(y)dy − x

∫ 1

0

(1− y)f(y)dy

=

∫ x

0

(x− y)f(y)dy −
∫ x

0

x(1− y)f(y)dy −
∫ 1

x

x(1− y)f(y)dy

=

∫ x

0

(x− 1)yf(y)dy +

∫ 1

x

(y − 1)xf(y)dy

=

∫ 1

0

G(x, y)f(y)dy, for x ∈ [0, 1]. (2)
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Here, the Green’s kernel1 for the interval [0, 1] is

G(x, y) =

{
(x− 1) y 0 ≤ y ≤ x ≤ 1,

(y − 1) x 0 ≤ x ≤ y ≤ 1.
(3)

We view integration against the Green’s kernel (3) as a global operation that solves the
differential equation (1) with boundary conditionsby inverting the differential operator
including boundary conditions.

2.2. The discrete 1D Poisson problem. The usual centered finite differences

ui−1 − 2ui + ui+1

h2
= fi (4)

are used in the discretization of (1) on equidistant interior grid points xi = ih, i =
1, 2, . . . , n− 1, with h = 1/n. When uxx = f is differentiable, the truncation error is seen
via Taylor expansions to be

Ti = f(xi)−
u(xi−1)− 2u(xi) + u(xi+1)

h2
= O

(
h2) . (5)

For the two interior points next to the boundary, we use the boundary conditions u(0) =
u0 = 0 and u(1) = u1 = 0 and find

uxx(h) =
0− 2u(h) + u(2h)

h2
+ O

(
h2) ,

uxx(1− h) =
u(1− 2h)− 2u(1− h) + 0

h2
+ O

(
h2) .

Writing (4) in matrix form, the Poisson problem is discretized as

AU = F. (6)

For example, on the grid with h = 1/4, i.e. on the points {0, 0.25, 0.5, 0.75, 1}, the
differential operator ∂xx including the boundary conditions u(0) = u(1) = 0 is discretized
by the matrix

A3 =
1

h2

−2 1 0
1 −2 1
0 1 −2


The entries in U approximate the solution at the interior points {0.25, 0.5, 0.75} and
F = [f(0.25), f(0.5), f(0.75)]T approximates the right hand side. In general, for Dirichlet
boundary conditions, the discrete solution lives on the n − 1 interior points of the dis-
cretization of [0, 1] by n intervals with h = 1/n. We will see in §4 that problems with
non-vanishing Dirichlet boundary data are numerically approximated by the same matrix
A as Poisson problems, but with singular right hand side.

2.3. Connection between the discretization of the differential equation and the
integral formula. The matrix A is tridiagonal, and U can be found in O(n) operations.
In higher dimensions, this is not the case and we turn to fast solvers in Fourier space (Fast
Poisson solvers, [26]) instead. From [27] we know

Lemma 1. The (i,j) entry of A−1 ∈ R(n−1)×(n−1)(for n > 3) is

aij =
min(i, j) (max(i, j)− n)

n3
.

1This is an unfortunate misnomer because it really is the kernel for the Poisson problem, and should
be called Poisson kernel — but this name is reserved for the kernel for the Dirichlet problem!
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For the above example this gives

A−1 = − 1

64

3 2 1
2 4 2
1 2 3

 .

Also from [27], we know that

Lemma 2. ‖A−1‖∞ = 1
8

for n even and ‖A−1‖∞ = 1−n−2

8
for n odd.

This uniform boundedness of the inverse operator, together with the second order
consistency of the discretization, combine to give second order convergence. The solution
of the discrete problem is

U = A−1F, (7)

The evaluation of the true solution on the grid points (denoted by Eu) satisfies

Eu = A−1(F − T ). (8)

where the norm of the truncation error is ‖T‖∞ = O
(
h2

)
. Hence ‖U−Eu‖∞ = ‖A−1T‖∞ ≤

‖A−1‖∞‖T‖∞ = O
(
h2

)
, and we have proved the following theorem.

Theorem 3. As the grid is refined, the solution of the discretized problem converges in the
infinity norm on grid points with second order to the solution of the differential equation.

The main point of this § is the analogy between (7) and (2). The entries of A−1 in (1)
are equal to values of the Green’s kernel (3) at the grid points, multiplied by h; this factor
h corresponds to integration against the kernel. Instead of viewing (6) as discretizing the
differential equation (1), we view the system (7) as discretizing the Green’s kernel-based
integral formula (2). Finite difference operators discretize differential operators including
boundary conditions, and their inverses may approximate integral formulas!

3. Known discontinuities in the solution of a Poisson Equation

3.1. Differential equations with singular sources. Since the EJIIM deals with dis-
continuities in solutions of differential equations (or discontinuities in their derivatives),
it is essential to have a good understanding of the delta and dipole (also called doublet).
These distributions introduce irregularity into the solution of the Poisson equation when
placed on the right hand side.

Definition 1 (1D delta, dipole). Let γ ∈ (0, 1).

The delta δ(x − γ) (centered at γ) is the distribution that satisfies
∫ 1

0
Φ(x)δ(x − γ)dx =

Φ(γ) for any function Φ ∈ C∞([0, 1]).

The dipole δ′(x−γ) (centered at γ) is the distribution that satisfies
∫ 1

0
Φ(x)δ′(x−γ)dx =

−Φ′(γ) for any function Φ ∈ C∞([0, 1]).

Definition 1 gives mathematically precise meaning, while the following aspects are also
important for understanding EJIIM.

1. The delta and dipole are convenient short notation for the fact that a solution of a
differential equation has a discontinuous derivative, or is discontinuous itself. This
view will allow us to apply the standard “integration against a kernel” approach to
find solutions of the differential equation.

2. The delta and dipole can be viewed as ”singular” limits of certain C∞ functions with
fixed L1 norm as their support vanishes. This view helps interpret our discretization
of the differential equation.

3. The delta and dipole are useful for making sense of integration by parts, an essential
tool for differential equations. This view will initially be least useful for EJIIM, but
is the most easily appreciated interpretation. Later, we will see a correspondence
between integration by parts (Green’s identities) on the differential equation side
and Schur complements on the discretized equation side.
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An immediate benefit of introducing the delta is the characterization of the Green’s
kernel in a form that carries over to higher dimensions. The importance of the formula
(2) for the solution of the Poisson problem lies in the fact that it is valid even for singular
(distributional) right hand side f and that ot carries over verbatim to higher dimensional
Poisson problems, at least for sufficiently nice domains. In 1D, the Green’s kernel satisfies
∂2G(x, y)/∂x2 = δ(x − y) with G(0, y) = G(1, y) = 0 for all y ∈ (0, 1). It is symmetric
and negative everywhere in (0, 1)× (0, 1). In higher dimensions, too, there exists a unique
G defined by just the above properties: It satisfies a Poisson equation with a delta on
the right hand side, vanishes on the boundaries, is symmetric in x and y, and is negative
where finite.

Consider the integral formula (2) for the Poisson problem with the following four in-
creasingly singular right hand sides. The irregularity occurs always at the same point
α ∈ (0, 1); by 1Ω we mean the characteristic function of the set Ω.

1. f = (x− α)1{α<x<1} (f continuous but not differentiable)
2. f = 1{α<x<1} (f discontinuous)
3. f = δ(x− α) (f first order singular)
4. f = δ′(x− α) (f second order singular)

For all 4 cases, the solution via (2) makes sense. The reader is asked to convince herself in
Remark 3.3 that these solutions satisfy the differential equation in the classical sense away
from α, while becoming more and more singular at α. Technically, G does not satisfy the
requirements on the test function Φ in the definitions of the delta and dipole. The biggest
problem occurs in applying the dipole at the kink of G, where the derivative does not
exist. However, for any u(α) the solution

u(x) =

∫ 1

0

G(x, y)δ′(y − α)dy = −∂G

∂y
(x, α) =


−x x < α,

u(α) x = α,

1− x α < x,

is conceivable, with u(α) = 1/2− α most satisfactory because it it has the property that
values of u are the averages of one-sided limits. For continuous f , we find that u ∈ C2; for
discontinuous f , we get u ∈ C1; for first order singular f , we get u ∈ C0 and for second
order singular f , we get u ∈ H1, the subspace of functions in L2 whose derivative is also
in L2. In all cases, only one of the derivatives of u is discontinuous2, and the magnitude
of the jump3 is 1.

Remark 3.1. In one space dimension, the Green’s kernel is G(x, y) = N(y−x)+H(x, y),
where N is the fundamental solution (Newtonian potential) that satisfies ∆N = δ(x) and
H is a harmonic (in 1D, that means affine) function in x for every y which is introduced to
achieve the desired boundary values: H(0, y) = −N(y) and H(1, y) = −N(y− 1). Usually
the fundamental solution is made unique by specifying its asymptotic behavior near infinity.
For the (nonstandard) N in 1D, we require inf(N) = 0.

3.2. EJIIM for singular sources. The conceptually easiest application of EJIIM is
the numerical approximation of problems with right hand sides of the type 1-4. This is
the context in which Li and LeVeque’s Immersed Interface Method [8, 11] is preceded by
Peskin’s Immersed Boundary Method [18] and Mayo’s Fast Poisson solvers on irregular
domains [17]. The EJIIM formulas from [27] deal with two issues at the same time:

1. The truncation error in (4) deteriorates as u becomes less smooth.
2. We need to discretize singular f .

The idea is to use the knowledge of the irregularity of u introduced by f (as given by
the integral formula) and to build it into the discretization. The strength of the dipole is

2By convention, u is its own zeroth derivative.
3From a practical point of view, the search for non-smooth solutions of the differential equation with

prescribed jumps is the reason to study singular f .
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the jump in u, the strength of the delta is the jump in ux, the jump in f is the jump in
uxx, the jump in fx is the jump in uxxx and so forth. This results simply in “corrections”
to the standard formulas applicable on the right hand side of the discretization (4) for
the smooth case; these corrections may be viewed as a discretization of the singularity
of f . Contributions of different singularity are each separated into the strength of the
discontinuity and the discretization of the normalized singularity, i.e. how it influences the
solution on the grid.

In this sense we will speak of grid functions resulting from discretizations of second
order differential equation as “differentiable”, “not differentiable” and “discontinuous”
between grid points if the right hand side for the two neighboring grid points behaves
under refinement like O(1)) (i.e. is a function), O(h−1)) (i.e. is first order singular) and
O(h−2)) (i.e. is second order singular), respectively.

We copy the main result on how to do this from [27] as Lemma 4. Square brackets

[u(m)] = u(m)(α+)− u(m)(α−) indicate jumps, i.e. the difference subtracing the left limit
of u at the point α from the right limit.

Lemma 4 (jump-corrected differences). Let xj ≤ α < xj+1, h− = xj − α and h+ =
xj+1 − α. Suppose u ∈ C4[xj − h, α)∩C4(α, xj+1 + h], with derivatives extending contin-
uously up to the boundary α. Then the following approximations hold to O

(
h2

)
:

ux(xj) ≈
u(xj+1)− u(xj−1)

2h
− 1

2h

2∑
m=0

(h+)m

m!
[u(m)],

ux(xj+1) ≈
u(xj+2)− u(xj)

2h
− 1

2h

2∑
m=0

(h−)m

m!
[u(m)],

uxx(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

h2
− 1

h2

3∑
m=0

(h+)m

m!
[u(m)], (9)

uxx(xj+1) ≈
u(xj+2)− 2u(xj+1) + u(xj)

h2
+

1

h2

3∑
m=0

(h−)m

m!
[u(m)]. (10)

The system (6) becomes

AU = F + ΨC (11)

where C ∈ R4 is the vector of jump strengths {[u], [ux], [uxx], [uxxx]}as in Lemma 4, and
Ψ ∈ Rn−1 × R4 has two non-zero entries per column, introducing the jumps in C into
the jth and (j + 1)st equations with the correct geometry. For example the first column
corresponds to [u] and has non-zero entries Ψ(1, j) = 1/h2 and Ψ(1, j + 1) = −1/h2. In
Remark 3.4 the reader is asked to convince herself that Theorem 3 still holds for this
singular case and even if the corrections are used only up to [uxx].

Remark 3.2. Plotting Ψ(1, ·) and Ψ(2, ·) for fixed α, xj ≤ α < xj+1, as n → ∞ gives
geometric intuition of the discrete dipole Ψ(1, ·) and the discrete delta Ψ(2, ·).

Remark 3.3. a) The solutions of problem (1) with f given by

1. f1 = (x− α)1{α<x<1},
2. f2 = 1{α<x<1},
3. f3 = δ(x− α),
4. f4 = δ′(x− α).
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are

u1(x) =

{
a1x, 0 ≤ x < α

a1x + (x− α)3/6, α < x ≤ 1
, where a1 = −(1− α)3/6,

u2(x) =

{
a1x, 0 ≤ x < α

a1x + (x− α)2/2, α < x ≤ 1
, where a1 = −(1− α)2/2,

u3(x) =

{
(α− 1)x, 0 ≤ x < α,

(x− 1)α, α < x ≤ 1,

u4(x) =

{
−x, 0 ≤ x < α,

1− x, α < x ≤ 1.

b) Knowledge of the jumps in u and jumps in its derivatives and discretization via Lemma 4
leads to a pointwise recovery of the solutions from part a) for any uniform mesh.

Remark 3.4. a) Given right hand side f that is smooth except for singularities up to
second order at a finite number of points and using (9) and (10), the discrete solutions of
(1) converges to the solution of the continuum problem like O

(
h2

)
in the maximum norm

on grid points. b) The result in a) holds even if the [uxxx] terms are dropped from (9) and
(10). The fundamental idea is that the discretized integration against the kernel smoothes
the only locally large truncation error by one order.

4. Dirichlet BVP via Poisson Problem

4.1. A 1D Dirichlet problem. Let u0 and u1 ∈ R, and consider the Dirichlet BVP:

uxx = 0 in (0, 1), (12)

u(0) = ū0, (13)

u(α) = ū1. (14)

First consider the case α = 1. Existence and uniqueness of the solution of this problem
are trivial,

u(x) = ū0 + x (ū1 − ū0), for x ∈ [0, 1]. (15)

There exists another important way to write the solution, which is analoguous to standard
boundary integral methods in higher dimensions:

u(x) = − ∂

∂y
G(x, y)

∣∣∣∣
y=0

ū0 +
∂

∂y
G(x, y)

∣∣∣∣
y=1

ū1. (16)

The kernel here, the outward normal derivative of the Green’s kernel along the boundary,
is known as the Poisson kernel in higher dimensions. We need to interpret (16) for x = 0
and x = 1, because in these cases the derivatives at y = 0 and y = 1, respectively, do
not exist. However, both one sided limits for the derivatives of G exist in both cases, and
taking the limits for y ∈ (0, 1) yields exactly (15), while applying the limits for y 6∈ (0, 1)
results in u(0) = u(1) = 0.

We choose to write the solution in the following peculiar form, using the solution for a
Poisson problem by integration against the Green’s kernel (2) to solve a Dirichlet problem!

u(x) = lim
ε→0+

∫ 1

0

G(x, y)
(
u0δ
′(y − ε)− u1δ

′(y − (1− ε))
)
dy = (17)

= lim
ε→0+

∫ 1

0

G(x, y)
(
[u]0δ

′(y − ε) + [u]1δ
′(y − (1− ε))

)
dy, for x ∈ (0, 1).

The sole purpose of the limit in this formula is to define the application of δ′ to G at a
point of discontinuity by using a one-sided limit. On the boundary, i.e. for x ∈ {0, 1}, (17)
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does not agree with (15). The function defined by (17) on [0, 1] has jumps [u]0 = u0

and [u]1 = −u1 at the left and right endpoints, respectively!

4.2. The discrete 1D Dirichlet problem. Consider again n = 4, discretize the differ-
ential operator on interior points as for the Poisson problem, and the boundary condition
at the boundary points.

1

h2


1 0 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 0 1




u0

u1

u2

u3

u4

 =


ū0/h2

0
0
0

ū1/h2

 (18)

Elimintion of known variables is the easiest example of a Schur–complement and yields

A3U =

− 1

h2

ū0

0
ū1

 . (19)

The solution of our discrete model problem on {0, 0.25, 0.5, 0.75, 1} is

U = A−1
3

− 1

h2

ū0

0
ū1

 = A−1
3

− [u]0 /h2

0
[u]1 /h2

 , (20)

which results from simply moving the known boundary values in the discretization of the
Laplacian (4) onto the right hand side. The standard way of solving the Dirichlet problem
(20) discretizes (17) just as (7) discretizes (2). Also, (20) is a special case of (9) and (10)
in the following sense:

Consider xn−1 ≤ α < 1, and recall that the discretization of the Poisson problem A
imposes u(1) = 0 on the discretization. Equation (9) in this case is

uxx(xn−1) ≈
0− 2u(xn−1) + u(xn−2)

h2
− 1

h2

3∑
m=0

(1− α)m

m!
[u(m)]1. (21)

In the limit as α −→ 1, this becomes

uxx(xn−1) ≈
−2u(xn−1) + u(xn−2)

h2
− 1

h2

3∑
m=0

0m

m!
[u(m)]1 =

=
−2u(xn−1) + u(xn−2)

h2
− [u]1

h2
.

So uxx(xn−1) = 0 and u(1) = 0 becomes

−2un−1 + un−2

h2
=

[u]1
h2

just as in (20). The question now becomes: What is the continuous equation discretized
by (4), modified to (21) at xn−1?

4.3. Connection between the discretization of the differential equation and an
integral formula. The answer depends on what we use for [ux], [uxx] and [uxxx]. For
example, [uxx] = [f ] and [uxxx] = [fx] depend on the extension of f to (α, 1). For f = 0
on(0, α) the extensio is zero, and [uxx] = [uxxx] = 0; but in any case, [uxx] and [uxxx] can
be known from the problem data. The choice of [ux] has a bigger impact. For EJIIM, we
propose [ux] = −u−x , while the earlier capacitance matrix approach [20] as incorporated
into the IIM [29] used [ux] = 0. In the first case, [ux] needs to be determined as part of
the solution; in the second case, [ux] is known. This seeming disadvantage of the EJIIM
is outweighed by the fact that for this choice of [ux] together with always extending f by
0 on (α, 1), the extension of u by zero (α, 1) satisfies all jump conditions and boundary
conditions as well as the extension of the differential equation, and is the unique solution of
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ux(α) = 0, u(1) = 0, uxx(x) = 0 in (α, 1), where the first boundary condition follows from
[ux] = u−x ⇒ u+

x = 0. Finally, u ≡ 0 on (α, 1) and [u]α = −ū1 guarantees u−(α) = ū1. In
the capacitance matrix approach, the correct boundary limit u(1) needs to be found and
f needs to be extended differentiably in order to make u+(α) = 0.

By DT
x,α− we denote the unique linear operator that extrapolates the derivatives of a

grid function at α, based on the three grid points to the left of α, to second order. The
EJIIM for (12)–(14) can be written as

AU =
1

h2


−[u]0

0
...
0

 +
(1− α)

h2


0
...
0
C

 ,

C = −DT
x,α−U.

Shortening DT
x,α− to DT and writing F̃ = (−[u]0, 0, . . . , 0) /h2 and Ψ1 =

(
0, 0, . . . , (1− α)/h2

)T
,

this is

AU = F̃ + Ψ1C,

C = −DT U.

The first set of equations includes (18)! We rewrite it:

U = A−1(F̃ + Ψ1C),

and form the Schur complements for the variables U and C:

(I +A−1Ψ1D
T )U = A−1F̃ , (22)

(I + DTA−1Ψ1)C = −DTA−1F̃ . (23)

Equations (22) and (23) are discretizations of the two integral equations that appear
in the following Lemma.

Lemma 5. The solution of the problem (12)–(14) and the jump c = [ux] = −u−x (α)
satisfy

u(x) +

∫ 1

0

G(x, y)δ(y − α)
d

dx
u(x)

∣∣∣∣
x=α−

dy =

∫ 1

0

G(x, y)
{
δ′(y − α)u1 + δ′(y − 0)u0

}
dy,

(24)

c +
d

dx

∫ 1

0

G(x, y)δ(y − α)c dy

∣∣∣∣
x=α−

= − d

dx

∫ 1

0

G(x, y)
{
δ′(y − α)u1 + δ′(y − 0)u0

}
dy

∣∣∣∣
x=α−

.

(25)

Proof. (25) follows immediately from (24) by applying d
dx

(·)
∣∣
x=α− to both sides and

renaming c = d
dx

(u)
∣∣
x=α− , just as in the discrete case. To see that u must satisfy (24),

we decompose u = u0 + [ux]u1 + [u]u2, where

∆u0 = 0 with u0(0) = ū0, u0(1) = 0,
∆u1 = δ(x− α) with u1(0) = 0, u1(1) = 0,
∆u2 = −δ(x− α) with u2(0) = 0, u2(1) = 0,

satisfy

u0(x) =

∫ 1

0

G(x, y)(−ū0)δ
′(y − 0)dy =

{
0 x = 0,
ū0(x− 1) 0 < x ≤ 1,

u1(x) =

∫ 1

0

G(x, y)δ(y − α)dy =

{
(α− 1)x 0 ≤ x < α,
(x− 1)α α < x ≤ 1,

u2(x) = −
∫ 1

0

G(x, y)δ′(y − α)dy =

{
−x 0 ≤ x < α,
1− x α < x ≤ 1.
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Adding the solutions,

u(x) =

∫ 1

0

G(x, y)
{
−ū0δ

′(y − 0) + [ux]δ(y − α) + ū1δ
′(y − α)

}
dy,

and moving unknown terms to the left (with [ux] = −u−x ) results in (24).

Remark 4.1. The Schur-complement (22) shows how preconditioning (presumably A−1

can be applied in a fast manner) can also correspond to transforming a differential equation
into an integral equation, here (24). The Schur-complement (23) shows how algebraic
manipulations on the discrete system (applying −DT ) can correspond to transforming an
integral formula into a boundary integral formula, here (25).

Remark 4.2. The biggest difference between the grid–aligned boundary case and the un-
aligned boundary case is the introduction of the new discrete variable C, an unknown jump.
In higher dimensions, this means many jumps, their number “proportional” to the length
of the boundary. However, using a fast solver for the regular problem and the Schur–
complement (23), we see that we have discretized a Fredholm equation of the second kind
on the boundary (25), which is well known to behave nicely numerically. This observation
has borne out in numerical studies, see [27] etc.

Remark 4.3. There exists an analogue of Lemma 1 for the case that (12) is replaced by
uxx = f in (0,1).

4.4. Further examples of singular sources. In [26], Laplace’s equations and the 2D
linear elastostatic equations are solved quickly on the rectangle with various boundary
conditions, by reflecting the solution in each dimension and solving periodic problems on
the larger domains. There nonzero boundary conditions on the original rectangle enter as
singular sources in the equation on the extended domains.

4.5. Comments on jump relations. One of the major steps of the EJIIM is the deriva-
tion of (one-sided) jump relations. We have seen that for Laplace’s equation, [u], [ux] and
the problem data ([f ], [fx], . . . ) is all we need. In 2D, this is also true as was shown in [27].
The idea in 2D is to take tangential derivatives on lower jumps and normal derivatives
on the data, which we believe will extend to 3D without difficulties. In 3D, Schwab and
Wendland [22] have developed integral equations for just these jumps, based on the same
ideas. The advantage of EJIIM over true boundary integral methods lies in its ability to
deal with body forces and extendibility to variable coefficients; the drawback is that for
problems where boundary integral methods apply, they are probably faster than EJIIM
(for fixed quality of solution).

5. Conclusions

We have explained the relationship between a finite difference discretization of the
Laplacian and Green’s kernels. The usual discretization of Dirichlet boundary values at
grid points was shown to be a special case of the EJIIM, and fast Poisson–solver based
Schur–complements were shown to discretize integral formulas. These connections serve
to explain the EJIIM also in higher dimensions.
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